x^2+25^2=32^2

Simple and best practice solution for x^2+25^2=32^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+25^2=32^2 equation:



x^2+25^2=32^2
We move all terms to the left:
x^2+25^2-(32^2)=0
We add all the numbers together, and all the variables
x^2-399=0
a = 1; b = 0; c = -399;
Δ = b2-4ac
Δ = 02-4·1·(-399)
Δ = 1596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1596}=\sqrt{4*399}=\sqrt{4}*\sqrt{399}=2\sqrt{399}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{399}}{2*1}=\frac{0-2\sqrt{399}}{2} =-\frac{2\sqrt{399}}{2} =-\sqrt{399} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{399}}{2*1}=\frac{0+2\sqrt{399}}{2} =\frac{2\sqrt{399}}{2} =\sqrt{399} $

See similar equations:

| 4*3^(3x-1)=36 | | 13a+1=11a+19 | | 5x+5=12-2x= | | 5x^2+10x+16=0 | | p-9/3=8 | | 3-y/9=21 | | 4-x/4=19 | | -6(m-5)=4(-3m+9) | | (x/45)+(x+23/40)=1 | | P=12+6d/11 | | 5x-10/2=1/4 | | 1/24x=7/11 | | 16x^2+56x+490=0 | | 2x-8=3(9-x) | | y=5+1-4 | | 5x-10/2=15 | | 5(x-3)=5(4x+12) | | 0.2=5^-x | | -x+5x=4x | | 64(10)=100x | | 2x-5=2x-15=180 | | 5b+5=7b-9 | | 6=5x+4+2 | | -15+-9=3d | | 33+11b=44 | | P=150-q | | 40=160/x | | 3x+1+3x+1+34=180 | | X^2+x-1.1=0 | | 5(-3)^2=x | | 3x-7=8(2x-3)-5 | | 14x+8+15x=0 |

Equations solver categories